Разность логарифмов с одинаковыми основаниями равна логарифму частного от деления выражения, стоящего под знаком логарифма уменьшаемого, на выражение под знаком логарифма вычитаемого.
Формула перехода от разности логарифмов к логарифму частного:
(x>0, y>0).
Это свойство в некоторых случаях позволяет найти разность логарифмов, даже если точные значения логарифмов уменьшаемого и вычитаемого по отдельности вычислить невозможно.
Примеры.
Это свойство верно, в том числе, и для десятичных и натуральных логарифмов.
Разность десятичных логарифмов равна десятичному логарифму частного от деления выражений, стоящих под знаками логарифмов уменьшаемого и вычитаемого:
Примеры.
Разность натуральных логарифмов равна натуральному логарифму частного от деления выражений, стоящих под знаками логарифмов уменьшаемого и вычитаемого:
Переход от разности логарифмов к логарифму частного верен и для большего количества слагаемых:
Например,
Переход от разности логарифмов к логарифму частного используется не только в вычислениях, но и для упрощения выражений, в ходе решения логарифмических уравнений, неравенств и их систем.